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Critical Fluctuations in a Thermochemical Instability. 
I. Mean Field Description 
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We calculate the temperature and concentration fluctuations in a homogeneous 
thermochemical model in the vicinity of a transition point towards a multiple 
steady state regime. Enhanced fluctuations of 0.1% are predicted at a distance of 
10 -3 ~ from the critical point in a volume element of 10 -3 mm 3. 
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1. I N T R O D U C T I O N  

Systems far from equilibrium can undergo transitions associated with the 
bifurcation of new branches of solutions of the macroscopic evolution 
equations. (1-3) Much attention has been devoted to the behavior of the 
fluctuations in the vicinity of such nonequilibrium transitions. Reaction 
diffusion systems have been among the privileged examples for which many 
results have been obtained. Most of these results are limited to the behavior 
of the composition variables. (4) A large number of macroscopic phenomena 
involve, however, thermochemical processes, in which the internal energy 
or the temperature is the key variable. These problems have been studied in 
great detail in engineering sciences, (5'6) but only recently has attention been 
paid to the effect of fluctuations. (7) Apart from their theoretical interest, 
nonequilibrium thermochemical instabilities could be of experimental inter- 
est in that one could expect to observe anomalous fluctuations associated 
with the instability. As far as we know such fluctuations have been 
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observed only in an indirect way in a nonequilibrium hydrodynamic 
instability. (8) 

In this paper, we study the fluctuations in a simple thermochemical 
model where the coupling between the composition and the thermal vari- 
able leads to the possibility of a transition towards a multiple steady states 
regime (cusp bifurcation). A similar model was discussed by Nitzan and 
Ross (9) who, however, did not take into account the effect of fluctuations. 
We will restrict ourselves here to the case of a well-stirred homogeneous 
system. Hence, we can apply the general theory for the study of critical 
fluctuations in a homogeneous system near a cusp bifurcation elaborated in 
previous papers. (4'1~ These results will be reviewed in Section 2. The 
deterministic thermochemical model under consideration is introduced in 
Section 3 and the values of the control parameters (external temperature, 
feeding rate of the reactor . . . .  ) at the bifurcation point are calculated in 
terms of the characteristics of the chemical mixture (rate constants, heat of 
reaction . . . .  ). In Section 4, the effect of homogeneous thermodynamic 
fluctuations is studied using the results expounded in Section 2. It is shown 
that enhanced fluctuations of the order of 0.1% may occur in the case of a 
typical exothermal reaction in gaseous phase at a distance of 10 .3 ~ from 
the critical point in a volume element of 10 .3 mm 3. It should be noted, 
however, that inhomogeneous fluctuations can be important since they can 
modify the characteristics of a transition (for instance the critical expo- 
nents) or even rule out the possibility of a transition. These questions will 
be considered in a forthcoming paper. 

2. MEAN FIELD FLUCTUATIONS IN THE VICINITY OF A CUSP 
BIFURCATION: GENERAL RESULTS 

In an ideal gas at equilibrium, fluctuations are known to obey a 
Poisson law. (11) Hence, if X stands for the number of particles in a given 
volume V, one has 

@ X2} 1 
- - -  ( 1 )  

(x)2 (x) 

where •X = X - (X}.  The average number of particles (X }  in the volume 
V can also be written as N A V x ,  where x is the (average) concentration (in 
mo l / c m  3) and N A is the Avogadro number. From (1), one concludes that 
for a gas under standard conditions in equilibrium (x ~ 10-4), fluctuations 
will be of the same importance as the average value in volume elements of 
the order V "-~ 10 -19 em 3. Clearly such fluctuations will not be perceived 
macroscopically. 
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When the system is subject to a nonequilibrium constraint, the thermo- 
dynamic state of the system can eventually lose its stability in favor of new 
macroscopic states. The vicinity of this instability or bifurcation point is 
generally speaking characterized by an enhancement of the fluctuations. 
Hence, the following two questions arise: 

1. How large are the enhanced fluctuations (i.e., in how large a 
volume element will they be of the same importance as the average value)? 

2. How close to the bifurcation point do they appear? 
In this section, we give a general answer to these questions for the 

simplest type of bifurcation in a homogeneous system: a cusp bifurcation 
or bifurcation towards multiple steady states. The basic point to note is 
that, according to our previous work, (10) one can identify a slow (intensive) 
variable u, whose probability density P obeys the following equation: 

O,P(u, t) = - O-~ ( -  6u - bu 3) + Q P(u,  t) (2) 

We suppose here b =/= 0, i.e., we do not consider the case of a so-called 
tricritical point or a higher-order instability. The stationary solution of (2) is 
a quartic: 

Pst(U)~exp( ~u2 bu 4 ) (3) 
2Q 4Q / 

The results (2) and (3) are general. The characteristics of the physical 
problem enter only through the dependence of the variables 6, b, and Q on 
the parameters present in the original problem. 

From (3), it is straightforward to obtain the exact value of the mean 
square fluctuation: 

<6u2) = <6u2)cf(q) (4) 

Here 
~6uZ)G = Q / 6  (5) 

is the value of the mean square deviation in the Gaussian approximation 
(b = 0). Note that ~6u2)~ diverges at the approach of the critical point 
6 ~ 0. In this limit, the fourth-power term in the exponential of (3) comes 
into play and one obtains the following result at the critical point (6 = 0): 

1"(3/4) ),/2 
<6u2)c = 2 F--0-]~ ( Q (6) 

Since, generally speaking, the noise amplitude Q is proportional to a small 
number (typically Q ~ t / V N A ) ,  the critical fluctuations (6) are several 
orders of magnitude larger than the Gaussian fluctuations (5). Note also the 
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different dependence on the volume: 

( 3 h g 2 ) G  ~ V -  1 and ((~b/2)c ~ V 1/2 

The transition from the Gaussian result (5) to the result (6) at the critical 
point is described by the fluctuation enhancement function f(q): 

[ K3/4(q) l ] (7) f(q) = 4q Kl/a(q ) 

where K, stands for the modified Bessel function and q is the dimensionless 
variable which measures the relative importance of the Gaussian coefficient 
3 and the non-Gaussian parameter b, respectively: 

6 2 

q-  8Qb (8) 

The function f(q) has the following properties: 

and 

lim f(q) = 1 (Gaussian limit) 
q--~ + oo 

q~0 4 r(3/4) f(q) ~ FO~(2q)~/2 

(9a) 

(critical limit) (9b) 

The above results allow us to answer the two questions raised at the 
beginning of this section: 

1. The amplitude of the critical fluctuations is given by (6). 
2. The distance from the critical point at which critical behavior will 

be observed is determined by the requirement that f(q) may be approxi- 
mated by its limiting form (9b). This is valid for q < 1. 

Of course, the above results have to be interpreted in terms of the 
original variables of the problem. In the following sections, we will show 
how they apply in the case of a thermochemieal instability in a continu- 
ously stirred tank reactor. 

3. A MODEL FOR A THERMOCHEMICAL INSTABILITY IN A 
WELL STIRRED TANK REACTOR 

The most common thermochemical processes are oxidation reactions 
in a continuously stirred tank reactor (CSTR). In this case, a constant flow 
of the chemical mixture passes through a reactor in which it is consumed. 
Since a realistic description of fluctuations under the above circumstances 
is difficult, we will consider here a conceptually simpler situation. Specifi- 
cally, we suppose that the relevant chemical species X is consumed in the 
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reactor by a monomolecular reaction: 

k 
X- A + (lO) 

where AH stands for the heat of reaction and k is the chemical rate 
constant. (We are interested primarily in exothermal reactions, for which 
2~H > 0). Moreover, we model the supply of X by incorporating a con- 
straint expressing the nonequilibrium condition under which the reaction 
takes place. This is realized in a simple way by coupling the above system 
with an external reservoir whose concentration is fixed at a value Xe, the 
rate of exchange being controlled by a coupling constant a. The macro- 
scopic equation of evolution for the concentration x of the chemical species 
X thus reads: 

O,x = - k x  - a (x  - Xe) (11) 

The composition variable x is coupled to the temperature T through the 
rate constant k: 

U k =  k ( T ) =  koexp ( -  ~ T  ) (12) 

where U stands for the activation energy (we have neglected the tempera- 
ture dependence of the preexponential factor). It is thus necessary to 
consider the equation of evolution for the temperature. We will again 
simplify matters and suppose that the temperature is homogeneous inside 
the reactor and heat flows out at the boundaries. If we call c the specific 
heat per unit volume of the reactive mixture, K the conductivity of the 
reactor wall, S its surface, and d its thickness, V R the reactor volume, and 
Te the external temperature, then we obtain 

~ ,T= r k x -  ~ ( T -  T~) (13) 

where 

r -  B -  KS (14) 
c ' cVRd 

Equations (1 t), (12), and (13) are the equations for our simplified model of 
the CSTR. 

Let us now show that these equations give rise to a bifurcation leading 
to multiple steady states. The steady state values Xst and Tst are given by 

aXe 
- ( 1 5 )  Xst k(Tst ) + a 

and 

rak ( Tst ) x e 
f (Tst ,Te,Xe) = T s t -  T e - f i [ k ( T s t ) + a  ] = 0  (16) 
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Fig. 1. 

/ ~  Ts t 

Existence of multiple steady states, solution of the transcendental equation (16). 

From a graphical solution of the transcendental equation (16) (see Fig. 1), 
it is clear that a transition to a regime with multiple steady states can occur. 
The bifurcation point is characterized by the fact that the stationary 
temperature Tit is a triply degenerate solution of Eq. (16), i.e., f and its first 
two derivatives towards Tst vanish identically at the critical point. Setting 

d k (  T~t ) 
k ( r s t  ) = k c , dr~t - k'~ 

and so on, one obtains 
tOLX e 

(kc + a ) (Ts t  - T,,) = - - f  k c (17a) 

rOLX e , 
( k  c + a)  + k ' ( r s~  - Te)  = ----~-k~ (17b) 

FOLX e pt 
2k'~ + k ; ' ( T s ] -  Te)  = - - ~ k  c (17c) 

Before proceeding further, it is useful to note that one can distinguish the 
following seven dimensionless variables in the set of equations (11)-(13): 

"r = kot , x T a ~ rxe U 
X e '  T e e '  - k '  T '  P -  T~ ' Y -  k B T  ~ 

(18) 
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The time parameter r does not appear in a steady state analysis. The steady 
state conditions (15) and (17a) and the bifurcation conditions (17b) and 
(17c) yield four equations involving the last six quantities. After lengthy but 
straightforward algebra, these equations can be recast into the following 
simple form: 

x[t 1 Y 
x~ 2 7 - 2  

T;~ 7 
T~ u  

a Y 
k~ 7 - 4  

B PT 
4 

(19a) 

(19b) 

(19c) 

One notes from (19c) that u > 4, in order to obtain a physically acceptable 
solution. Consequently, one obtains from (19a) and (19b) that 

Xe c c 
T < xst < G ,  T~ < Tst < 2 T~ (20) 

Of course, the inequalities x~t < x e and T e < T~t are trivial since we con- 
sider an exothermal reaction which consumes the substance X. From (19c) 
and (19d), one concludes 

kc< , kc< 2 (21) 
P 

Let us now consider a certain chemical reaction (for which k0, U, and 
r are known) taking place in a given reactor (for which the exchange 
parameters a and fl are known). Then it follows that the remaining 
parameters Xst , T~t , xe, and Te are completely determined by the equations 
(19) at the critical point. We will denote these values by x~], T~t, Xe ~, and 
T~. In order to investigate the vicinity of the critical point, we consider 
values of the control parameters, the external temperature T~, and concen- 
tration x~, close to their critical values Te ~ and x~: 

T e = T c ..t- A T e ,  x e = Xe c "J~ A X  e (22) 

with A T J T f  and A x e / X  f small. In order to calculate the corresponding 
change A T~t in the reactor temperature: 

L t  = r~ + k L t  (23) 

we remember that f and its first two derivatives towards T~t vanish at the 
critical point: 

T ~ c ~ Of (TsCt, Te c ,XeC ) = Aa2f (Ts~ T~ xf)  = 0 f (  s t , r"  , X e  ) ~" ~ O'.l'~t ' , (24) 

(19d) 



160 Van den Broeek 

Hence by Taylor expansion, one has: 

1 a)  , Xe )Ar3 0 = f(T~t, T~ ,Xe)~ -'~ OT 3 (Tst, T[ 

of 
+ ( r :  Te , Xe )Z re 

Of c + ~ (Tst, T~ ,Xe~)Axe + higher order terms in ATst 

(25) 

From an explicit calculation of the partial derivatives using the bifurcation 
conditions (19), one has 

(Ars t )3  _ATe 2 Axe 
1 7(7/, _ 2) --+-7- + (26) 
12 Tst T[ 7 - 2 Xe ~ 

The corresponding change in the concentration 

is obtained from (15): 

Xst = x[t + Axst (27) 

AXst 7 - 4  ATst 
c 2 c Xst Tst 

(28) 

We conclude that in the vicinity of our bifurcation point, internal and 
external variables are related by a cubic law, reminiscent of the van der 
Waals equation of state at the critical point. Note also that (as 7 > 4), the 
reactor temperature and concentration are always more sensitive to a 
change of the external temperature than to a change of the external 
concentration, particularly for large values of the activation energy (7 >> 4). 
It is important to realize that the Taylor expansion (25) does not allow one 
to cross the critical point along the singular line of approach leading into 
the region of multiple steady states in the x e T e plane (see Fig. 2). Therefore 
one has more generally to expand f only with respect to the reactor 
temperature: 

~f 1 ~3f x~)A T~ 0 f(TsCt,re,Xe) + -~st(TCt,Te,xe)ATst + -~ OT----Ttst(Tst, T; , = 

(29) 

where we have taken into account that (O2f/OT2)(T~st, Te,Xe) is identically 
zero and where we have evaluated the third derivative O3f/3T~ at the 
critical point (since it is nonvanishing). From the explicit expression (16) for 
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T e 

TC 
e 

\ 
\ 

F 

ce r e g i o n  

X c X 
e e 

Fig. 2. Cusp bifurcation in the x e, T e plane. 

f and using the results (17), one obtains from (29) 

- A T e -  ~ axe ax  e AT3st 
~, 2 Tec x ;  - ATst T "}- iTs-st)3 12 (T -- 2)2Tct = 0 

(30) 

From this result it follows that the bisector, marking the entrance in the 
region of multiple steady states is given by 

ATe 2 Axe 
T s  + - -  - -  - o ( 3 1 )  v - 2  Xe ~ 

Along this line, the stationary solution is A Tst = 0 before bifurcation, i.e., 
the reactor temperature remains a constant equal to its critical value Ts~. At 
the crossing of the critical point, the coefficient of A Tst in (30) becomes 
negative: two new stable solutions 

arise whereas the original solution A Tst = 0 becomes unstable. Note that 
along the bisector (31), the concentration does not remain a constant. One 
indeed finds from (15) that 

Axst Axe 
~ -  ~ for ATst = 0 
Xst X e 
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The nonlinear law (26) is clearly a consequence of the marginal 
stability of the stationary state at the critical point. Another consequence 
will be the slowing down of the dynamics. Indeed, for small deviations: 

8x = x - Xst, 8T  = T -  Tst (32) 

one has 

~t 8T  = rk r k ' x s t -  fl 8T  + nonlinear terms (33) 

It is easy to verify that the determinant of the linear regression matrix I" 
appearing in the right-hand side of (33) is zero at the critical point 
[use bifurcation conditions (17)]. More precisely, one finds that detF 
~AT2 / (TCt )2  in the close vicinity of the critical point. Note that detF 
remains positive as long as one does not follow a line of approach leading 
into the region of multiple steady states. Indeed, in this case h Tst = 0 and 
one has to calculate higher-order terms. Using again the conditions (19), 
one finds 

detF P~'(7 - -  2 )  2 ATe 
k 2 - 4(3' - 4) ire~ (34) 

valid along the bifurcation line defined by (31). Hence, the determinant 
changes sign upon entering the coexistence region (following the bisector): 
the original stationary state looses its stability. 

From the vanishing of det F at the critical point, we conclude that, in 
order to describe the dynamics of perturbations, even small ones, in the 
close vicinity of the bifurcation point, one has to take into account the 
effect of nonlinear terms. Such small deviations will arise in every physical 
system due to the presence of thermal fluctuations. As they are only weakly 
damped near the critical point, their effect can become important in the 
close vicinity of this point. The purpose of the next section is to study the 
effect of fluctuations and dominant nonlinearities on the behavior of the 
system, and to answer the two questions discussed in Section 2 concerning 
the appearance of critical behavior. 

4. MEAN FIELD FLUCTUATIONS AT THE 
THERMOCHEMICAL INSTABILITY 

In order to introduce the effect of thermal fluctuations, we add 
stochastic forces to the macroscopic equations of evolution (11) and (13) 3 

Otx = - k ( T ) x -  a ( x  - xe) + F x (35a) 

OfT= r k ( T ) x -  B ( T -  r e )  + Fr  (35b) 

3 For  a jus t i f ica t ion  of this procedure ,  see for ins tance  Ref. 4. 
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Furthermore, we suppose that F x and F r are Gaussian white noises with 
correlation function: 

( Fx( t)Fx( t')) = Qx6( t - t') (36a) 

(Fx(t)FT(t '))  = Q x r S ( t -  t') (36b) 

(FT(t)FT(t '))  = Q r d ( t -  t') (36c) 

The noise strength factors Qx, Qx,T, and Qr are determined for a system in 
equilibrium by the fluctuation dissipation theorem. Note, however, that we 
introduced a nonequilibrium constraint here by adding dissipative trans- 
port terms in Eqs. (35). Therefore stochastic forces and dissipating terms 
will no longer obey the equilibrium fluctuation dissipation relation. Never- 
theless, we expect that the thermal noise will be of the same order of 
magnitude as in equilibrium (see for instance Refs. 12 and 13), and we will 
use the equilibrium result to obtain approximative values of the noise 
strength Q. For instance we know that the fluctuations of the concentration 
variable (neglecting its coupling to the temperature variable) at equilibrium 
are given by (ll~ [compare with (1)] 

( ~ X 2 )  _ Q x _  1 kBT ide._.al (X) (37) 
k N (~]Z/~X)p,T system VN A 

where N is the number of particles X in the system. It is clear from this 
example that the stochastic forces are proportional to a small parameter 
N -~/2. This feature will allow us to solve the coupled set of Langevin 
equations (35) for large value of N, i.e., in the weak noise limit. 

Let us now consider a stationary state on the bisector (31) close to, but 
before bifurcation. Under influence of the stochastic forces, the concentra- 
tion and temperature will fluctuate in the course of time around these 
stationary values: 

x = x ( 0  = x;t + Axst + 8x(t) (38a) 

r = r( t )  = r;t + 2xr~t + 6T(t) (38b) 

From (35), one obtains the following equations of evolution for these 
fluctuations: 

0k,-t x~ 
8T 
Tst 

_2 7 - 2  
7 - 4  

p 

+ o( 

- ( 3 '  - 2 )  6_y_x 
4 

2 / - 4  8T 
P ---T-- Tst 

4 

+ Z [  -12p 

3 8x~ ) 
Xst 

"77777 IgeXst 

kr 

(39) 
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with 

1 2) 8r [3(3' - 4) 8 r  8x 
Z = ~ ( 7 -  ~ ~-~,]+6--Xst 

+3(3' 4) 62 6V 2 2 ) ( g t  2 - __-77,.-~-+(3'2-103'+ ] (40) r:, rstJ] 
Let us now introduce the linear transformation which diagonalizes the 
linear regression matrix appearing in (39): 

u 1 

2 /2 
3 ' - 4  

0(7 - 4) Xst 

6T 
1 -+-7 

I Sx 
.778 

A Xst 

8T 
Tst 

(41) 

From (39)-(41) one obtains after lengthy but straightforward calculations: 

with eigenvalues 

- 6  

0 

+ Z  y - 4  

O 2 
- X  2 7 - 4  

Fx 

+ A kcx  
FT 

kcT~t 

(42) 

and 

X = 2 3 ' - 2  3 ' - 4  
y -  4 P 4 (43) 

8 -  1 0 ~ ' ( Y -  2) 2 A T  e 

X 4(7 - 4) Td 
(44) 

The results (43) and (44) are obtained from the properties that kc(X + 6) 
= - t r  F and k~X6 = det 1". 4 Note that the linear stability of the stationary 
state requires that X > 0 (for a more detailed discussion, see Ref. 6), hence 

O+ 1 + ( p +  1) 1/2 
4 < "y < 4 (45) 

P 

where we have added the condition y > 4 which is a consequence of the 
bifurcation condition (19c). In terms of the new variables, Z takes the 

a The result (44) can be obtained from (39) by including explicitly the terms of order 
~ T~/ T#. 
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following form: 

p3(3'9_6X -3- 2) 3 u 3 ( ~ATe ] 2 Z =  + 0 )u  + t e r m s i n u v ,  vZ, u2v, uv2, v 3 . . . .  

(46) 

We now want to investigate the properties of the two coupled Langevin 
equations (42) in the limit of weak noise. A general analytic study of (42) is 
impossible due to the complicated nonlinear coupling and the absence of 
detailed balance. However, in the limit of a large volume size, the strength 
of the thermodynamic forces and therefore also of the fluctuations 8x and 
6T  (i.e., u and v) is small. For this reasoning a restricted number of 
nonlinear terms play a role to dominant order in the volume. For instance, 
the term O ( A T e / T [ ) u  2 is negligible in the equation for u compared to the 
linear terms O ( A T e / T [ ) u  = 8u. On the other hand the rate of change of 
the u variable is much smaller than the rate of change of the v variable 
since 8 ~ 0  at the approach of the critical point. Therefore, v is a fast 
variable and can be eliminated adiabatically. A detailed proof of the above 
intuitive arguments can be found in Ref. 10. For the present problem, one 
verifies that to dominant order in the volume, the equation for the critical 
variable u is decoupled from the equation for v, and the dominant nonlin- 
ear term is the cubic term: 

Ok~.tU = -- 8U -- bu 3 -F F.  (47) 

Here 8 is defined by (44), and b is given by 

b = 2 033'(3' - 2)3(3' - 4)2 (48) 

3 [ 8 ( 3 ' _ 2 ) _ p ( 3 ' _ 4 ) 2 ]  3 

The scaled random force 

Fu(t  ) = F x ( t / k c ) / k c x  ~ 

has a strength Q [use (36)] 

Q = 1 / N  (49) 

where N = ( x ) V N  A is the average number of particles in the volume 
element under consideration. Note that always b > 0, which guarantees the 
existence of a normalizable stationary solution. We have thus reduced the 
problem to the standard form discussed in Section 2. 

The relation between u and the original variables can be found by 
inverting (41). Moreover, as the u variable is the only variable which 
develops enhanced, non-Gaussian fluctuations, it gives the dominant con- 
tribution to the fluctuations of composition and thermal variable. There- 
fore, for the purpose of calculating the second moment of these variables, 
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it will be sufficient to consider the contribution of the critical variable u 
in (41): 

~x P(7 - 4) 2 
u 

x--~t ~ p(-y - 4)  2 - 8(~, - 2) (50)  

8T 2 8x 
r~; ~ --v (51) y - 4 Xst 

Let us now apply the results of Section 2. The fluctuations of x and T at 
the critical point are given by [cf. Eq. (6)] 

[(dx2)c]~/2[r(3/4)]'/Z[gx(O'v)] ' / 4 (x s~ t )~ -  5- = 2 r(]/4) N (52) 

with 

(53) 

3 P(Y -- 4)6 (54)  
gx(O,'/) = ~ [8(~ '  -- 2) -- 0(~' -- 4 ) 2 1 Y ( 7  -- 2) 3 

gT(o,,) = ( ~ _  4 )4gx(p,,) (55) 

The onset of the critical regime characterized by a dependence of the 
fluctuations in N -  1/4 [see (52) and (53)] is determined by 

Hence: 

with 

&(p, v) _ 16 
3 

q= 8Qb < 1  

ATe [ gc(P,'Y) 11/2 
Tf < N (56) 

( ~ ' - 4 )  2 _ 32 ( ~ ' - 2 )  2 

y ( y _ Z ) [ 8 ( y _ Z ) _ o ( y _ 4 )  2] 9 p~y---~4 gx(O,Y) 

(57) 

In Fig. 3 we have represented the logarithm of gx, gr, and gc as a funetion 
of ~, for the value 0 = 1. The latter value is typical for an oxidation 
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Fig. 3. 

. . . . .  O c 

I 
- -  g T  , t  

. , "  ii :j . . . .  gx 
o .."" :::lt 

,..:., .: .......... 

-2  I I . . ,  
/ I 

- 3  I t / 

/ 
I 

The functions g:,, gT, and gc determining the enhancement of the fluctuations [Eqs. 
(52) and (53)] and the width of the critical region [Eq. (57)], respectively. 

reaction in gaseous phase ( X e ~ 1 0  -5 m o l e / c m  3, Tem_103 ~ and r--- 
108 ~  From these results one concludes that in a volume 
element containing N -- 1012 particles, enhanced critical fluctuations of the 
order of 0.1% can occur. The distance from the critical point at which 
critical behavior sets in is of the order A T  e ~ 10 .6  T~, hence for Te ~ 
103 ~ A T  e should be 10 -3 ~ 

5. C O N C L U S I O N  

We have shown that for a typical oxidation reaction taking place in a 
CSTR in gaseous phase, enhanced fluctuations of the order of 0.1% occur 
at a distance of 10 .3 ~  from the critical temperature in a volume element 
of the order of 10 .3 mm 3 ( N =  1012). Such volume elements can be 
scanned by laser light spectroscopy. However, it is questionable whether in 
an experimental setup sufficient control over temperature and concentra- 
tion can be achieved in order to actually perceive these enhanced fluctua- 
tions. Moreover, hydrodynamic effects may interfere with chemical and 
thermal fluctuations. In this paper, we focused on the critical behavior near 
a cusp bifurcation in a thermochemical system. However, the latter systems 
exhibit more complicated bifurcations such as bifurcation towards a limit 
cycle behavior or towards inhomogeneous steady states. It would be inter- 
esting to investigate the critical properties in these more complicated and 
typically nonequilibrium situations. 
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